What is Thinning?

- The most challenging logging chance faced by a harvesting system.
- The objectives of thinning are to:
 - Remove small, poorly formed, diseased, or otherwise undesirable trees
 - Improve the remaining stands
- Thinning vs. partial cuts

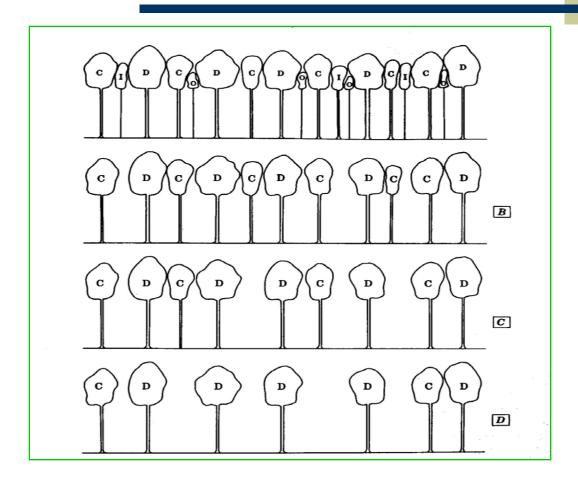
Thinning Systems

- To accomplish the objectives, the harvesting systems:
 - must remove these small, low volume trees,
 - cause minimal damage to the remaining trees
- Additionally,
 - a minimal amount of land should be cleared for roads and landings
 - this land will be out of timber production during the remainder of the rotation

Thinning Systems

- Land managers should understand:
 - the impacts of their thinning prescriptions on economics of harvesting systems
- Without such understanding, they may prescribe operations which:
 - are uneconomical
 - sacrifice revenue through lower stumpage prices or
 - at worst, are not interested by buyers in their timber sale

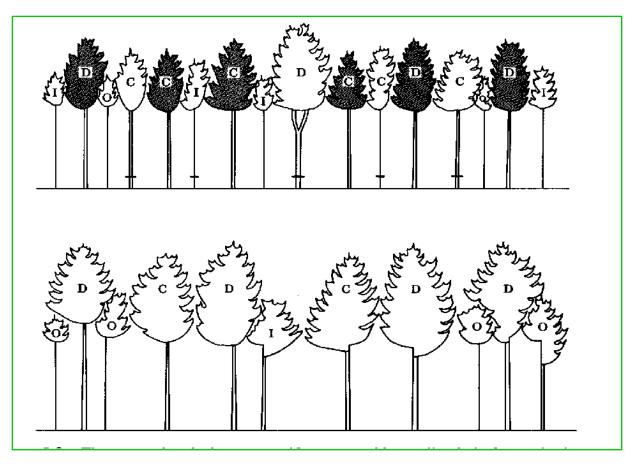
Thinning Methods

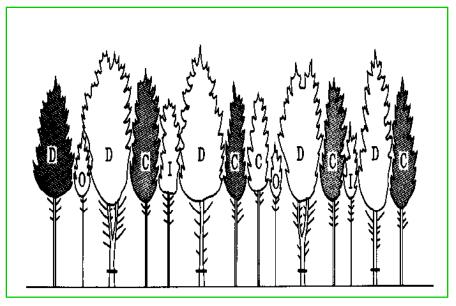

Silviculture textbooks describe several types of thinnings including:

- Low thinning,
- Crown thinning,
- Selection thinning, and
- Mechanical thinning.

Low Thinning

- This method, the oldest, is sometimes called "thinning from below".
- Trees are removed from the lower crown classes.
- Low thinning has a simple, close, and logical relationship to the natural course of stand development.
- It is easy to pick the trees to remove.


Low Thinning


Crown Thinning

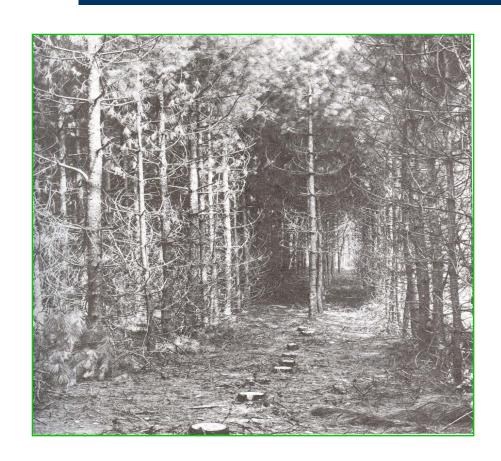
- Crown thinning was developed in which trees are removed:
 - from the middle and upper portion of the range of crown and diameter classes
 - rather than from the lower end

Crown Thinning

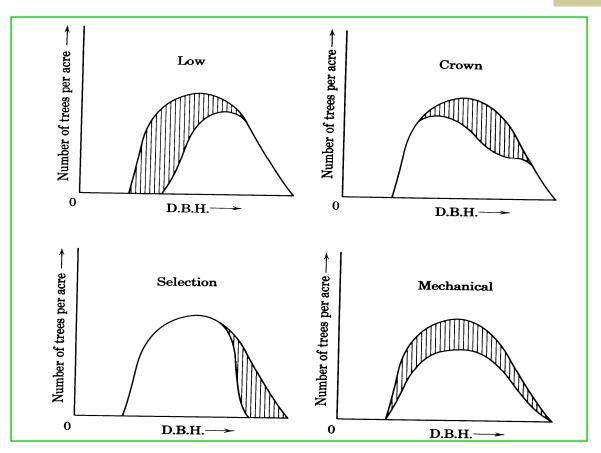
Selection Thinning

- dominant trees are removed
- stimulate the growth of trees in the lower crown classes

Mechanical Thinning


- The trees to be cut or retained are chosen on the basis of :
 - some predetermined spacing or other geometric pattern
 - with little or no regard for their positions in the crown canopy
- Is an older, ambiguous designation
- "Mechanical" refers to the mechanistic mode of choices and not to any use of machinery.

Mechanical Thinning


There are two general patterns that may be followed in mechanical thinning:

- Spacing thinning trees at fixed intervals of distance are chosen for retention and all others are cut.
- Row thinning trees are cut out in line or narrow strips at fixed intervals throughout the stand.

Row Thinning

Thinning Methods

(Source: Smith, D. et al. 1997. The Practice of Silviculture: Applied Forest Ecology)

Thinning Practices

- To achieve the silvicultural objectives of thinning, as few trees as possible should be removed non-selectively.
- However, it will decrease the harvesting productivity and increase the cost accordingly.
- As a result, we must make a trade-off between thinning selectivity and cost.

Thinning Practices

- Purely selective thinning is possible but expensive.
- Pure row thinning has no silvicultural advantages.

Thinning Method

- A common compromise method used is a fifth row/select thinning.
 - This method provides a similar removal level for residual stand as a purely selective thinning does.
 - However, removing volume per acre and average tree size are more profitable than pure selection.

Marking Trees

- Many foresters feel that timber should be marked prior to thinning if a quality thinning job is to be performed.
- This is not always the case.
 - costs about \$14 per acre
 - must be done before the sale
 - strong timber market may be missed by waiting for marking to be completed

Marking Trees

- The feller-buncher operator might produce the same selective result as marking trees before harvest.
- The marking of trees to be cut can also make the feller-buncher's job more difficult.
- If marking is required,
 - it should depend on the harvesting intensity.
 - it is often preferable to mark the trees to leave.
 - leave trees are usually marked on all sides.

Select Thinning System?

- The smaller the better?
- Sometimes this is the case, but often it is not. Because small machines:
 - have smaller payloads
 - require more trips into the stand
 - will result in higher costs per hour or per unit

Thinning Systems

Four thinning systems:

- Bobtail truck
- Conventional systems
 - tree-length skidding
 - shortwood
- Cut-to-length
- Chipping system

Bobtail Truck System

- This system used a bobtail truck which:
 - is driven into the woods
 - is loaded by hand or with a simple cable loader
 - has payload of 3-5 cords of shortwood
- Wood was felled, delimbed, and piled by hand.
- The system could produce about two loads per day or 50 cords per week.

Bobtail Truck Systems

- Many foresters:
 - Good memories of these systems
 - Performed thinnings in an excellent manner
- Problems with these systems:
 - Limiting their ability to work after any significant amount of rainfall
 - Product utilization was often poor
 - Extremely hazardous and strenuous
- Nearly disappeared in most of the areas

Conventional Systems

- Feller-buncher and grapple skidder
 - Use feller-buncher to fell and bunch timber
 - Access corridors for removal by grapple skidder
- Three-wheeled and small four-wheeled feller-bunchers are best suited for this application.

Conventional Systems

- Can deliver:
 - tree-lengths or
 - random lengths bucked with chainsaw or slasher
- Produce 400-500 cords per week
- Efficiently use both capital and labor
- Bucking into smaller products is often performed in order to increase truck payloads.

Conventional Systems

- Do require removal of trees to create access corridors
- Therefore, remove some trees in a nonselective manner
- Require fairly large landings
- Fifth-row/select thinning is a common method with these systems

- Have been popular in the Lake States, Canada, and the Scandinavian countries for years.
- Use forwarders to remove processed wood from the woods to roadside.
- For years these systems relied upon manual felling, delimbing, and piling of woods before forwarding.

- Modern versions of these systems rely on
 - harvesters or feller-bunchers for felling
 - processors to prepare wood for forwarders
- Interest in such systems has been steadily increasing due to several factors as follows:
 - Less site damage
 - Less labor intensity
 - Reduced residual stand damage
 - **...**

- Some advantages:
 - Leave limbs and debris scattered across the site:
 - keep nutrients in the woods,
 - look more aesthetically pleasing, and
 - limb mat can reduce soil damage by machines.
 - Perform thinnings more selectively
 - Require smaller landing
 - Stack wood higher at roadside

- Some disadvantages:
 - Initial capital investment is substantial
 - Lower weekly production rate
 - is often half that of tree-length skidding systems
 - Higher costs per unit of wood
 - Equipment is complex
 - more skilled labor is usually required

Chipping Systems

- Are also very popular for first thinning
- Since nearly all of the material removed is pulpwood, chipping on site can:
 - increase fiber yields and truck payloads,
 - minimize handling of these small stems,
 - thus improve productivity of the entire system.

Chipping System

- The chipping system for thinning:
 - tends to be quite large
 - needs high capital investment
 - requires higher production
 - requires a larger landing for safe and efficient operations
 - best suited for larger tract where the need to move is minimized.

Thinning Systems

Comparisons of some common mechanized thinning systems

Delivered Cost, \$ per cord (excluding stumpage)

System	Clear cut	2 nd Row	3 rd Row	5 th Row	9 th Row	Selective
Tree- length	31.6	33.7	37.3	37.5	37.8	na
Cut-to- length	34.4	38.1	39.5	39.4	na	40.4
Chipping	37.8	39.8	40.1	40.1	na	na

(Source: W. D. Greene and B. L. Lanford, 1999)

Thinning Systems

Comparisons of some common mechanized thinning systems

Weekly Production, cords

System	Clear cut	2 nd Row	3 rd Row	5 th Row	9 th Row	Selective
Tree- length	538	530	422	416	409	na
Cut-to-length	321	284	268	265	na	257
Chipping	515	515	515	515	na	na

(Source: W. D. Greene and B. L. Lanford, 1999)

Thinnings

- Solid wood manufacturers generally:
 - perform one to four thinnings
 - follow by a final harvest which can be either:
 - seed tree,
 - shelterwood, or
 - clearcut.

Thinnings

- First thinning:
 - is in 12-18 year age class
 - removals are almost all pulpwood
- Second thinning:
 - is generally stand improvement cut
 - optimizes spacing and removes suppressed or diseased trees
- Third and fourth, if performed:
 - remove some co-dominant and dominant trees down to specified basal area or trees per acre prescription.