

Cost Estimation

Cost Estimation

- Hourly equipment costs can be obtained in several ways:
 - Actual cost records
 - Machine rate

Machine Rate

- The machine rate cost estimation procedure was first developed and published by D.M. Matthew in 1942.
- The method has been widely used in both the USA and Canada for 50+ years.
- Miyata (1980) reviewed the machine rate procedure and assumptions used with this method.

Machine Rate

The machine rate cost estimation procedure categorizes equipment costs into three classes:

- Fixed or ownership costs,
- Variable or operating costs, and
- Labor costs.

Fixed Costs

- Fixed costs are incurred regardless of whether or not the machine is operated.
- Fixed costs include:
 - Depreciation (D)
 - Interest, insurance, and taxes (IIT)
- Fixed costs
 - do not vary with the level of production,
 - are always computed on a SMH basis.

Depreciation

(Fixed Costs)

$$D(\$/SMH) = \frac{(P-S)}{N \times (SMH/Year)}$$

Where

D = depreciation, \$/SMH

P = equipment purchase price, \$

S = salvage value, \$

N = economic life, years

SMH/Year = scheduled machine hours a year

Depreciation (Example)

For example, if a sawhead feller-buncher:

- cost \$140,000 to purchase
- had an expected salvage value of \$35,000 (25% of P)
- after four years (2000 SMH/year) of use

The depreciation would be calculated as follows:

$$D(\$/SMH) = \frac{(\$140,000 - \$35,000)}{4 \text{ years} \times (2000 \text{ SMH/ year})} = \$13.13/SMH$$

IIT (Fixed Costs)

Interest, insurance, and taxes (IIT) are commonly quoted as:

- A percentage of the average value of yearly investment (AVI) of the machine over its entire life.
- AVI is computed as:

$$AVI (\$/year) = \frac{(P-S)\times(N+1)}{2\times N} + S$$

IIT (Example)

For the sawhead feller-buncher in the example, AVI is:

$$AVI(\$/year) = \frac{(\$140,000 - \$35,000) \times 5}{8} + \$35,000 = \$100,625/year$$

Fixed Costs IIT (Example)

If interest was assumed to be 15%,

insurance to be 3%, and

taxes to be 2% of AVI respectively,

then IIT would be computed as:

$$IIT(\$/SMH) = \frac{(0.15 + 0.03 + 0.02) \times \$100,625/year}{2000SMH/year} = \$10.06/SMH$$

Fixed Costs (Example)

The total costs for the feller-buncher will be:

Total Fixed Costs = D + IIT
=
$$$13.13/SMH + $10.06/SMH$$

= $$23.19/SMH$

Variable Costs

- Variable costs
 - are incurred only when the machine is operated
 - usually reported on a \$/PMH basis
- Cost items which vary with machine operation include:
 - Fuel and lubricants (F&L)
 - Maintenance and repair (M&R)

Maintenance and Repair (M&R)

- Includes items ranging from scheduled preventive maintenance to major repairs:
 - These costs are best estimated from previous experience with similar equipment in similar conditions.
 - However, such experience is often not available, especially with new equipment models.
 - Commonly used way for estimating M&R costs is based on a percentage of depreciation cost.

M&R (Variable Costs)

$$M\&R(\$/PMH) = \frac{(\% M\&R) \times (P-S)}{N \times (SMH/year) \times UT}$$

Where

P=equipment purchase price price, \$

S=salvage value, \$

N=economic life, years

SMH/Year=scheduled machine hours a year

UT=utilization rate, % of SMH

%M&R=assumed value or from records

M&R (Variable Costs)

Alternatively, the above equation could be represented as:

$$M\&R(\$/PMH) = \frac{(\% M\&R) \times D}{UT}$$

Where

D=depreciation, \$/SMH

UT=utilization rate, % of SMH

%M&R=assumed value or from records

M&R (Example)

Again using our example of the sawhead feller-buncher, Let's assume that:

- M&R costs are equivalent to 100% of D, and
- Utilization averages 65%.

M&R can be calculated as:

$$M\&R(\$/PMH) = \frac{(1.00) \times \$13.13/SMH}{0.65} = \$20.20/PMH$$

Variable Costs

tire and track

- There are two ways of handling tire and track costs in the machine rate calculation:
 - As a part of maintenance and repair
 - this is the most common method
 - the cost of the original set of tires or tracks on the machine is included with the initial purchase price of the machine
 - Separate tire and track costs from M&R

Fuel and Lubricants

Variable Costs

- Fuel and lubricants (F&L) costs depend on:
 - Consumption rate
 - Unit price
- Fuel is either gasoline or diesel.
- Lubricants include:
 - engine oil, transmission oil, hydraulic oil,
 - grease, and
 - other lubrication fluids

F&L Costs

- Consumption rates for fuel and lubricants are known for a vehicle from available records,
- Prices for fuel and lubricants are easily obtained from local petroleum product dealers or service stations.

The F&L costs are simply computed as:

F&L (\$/PMH) = consumption rate × price Consumption rate = gal/PMH Price=\$/gal

F&L Consumption Rates

Consumption rates may also be estimated using the following equations reported by Miyata (1980):

Diesel engine (gal/PMH) = $0.037 \times HP$ Gasoline engine (gal/PMH) = $0.050 \times HP$ Engine oil (gal/PMH) = $(0.005 \times HP) + C/T$

Where HP=net horsepower at maximum rated engine speed C=crankcase capacity
T=time between oil changes (PMH)

WDSC 422

F&L Costs (Example)

For the sawhead feller-buncher, used in our example, assume:

- Diesel fuel is consumed 6.5 gal/PMH costing \$0.75/gal
- Lubricants are consumed at a rate of 1 gal/PMH at a cost of \$4.65/gal.

Variable Costs

Total variable costs are obtained by summing M&R and F&L costs. For the machine in our example:

Total Variable Costs = M&R + F&L = \$20.20/PMH + \$ 9.53/PMH = \$29.37/PMH

Labor Costs

- Labor costs include:
 - wages paid to employees and
 - all fringe benefits associated with the cost of labor.
- Labor costs in the machine rate are usually calculated by:
 - taking the wage rate and
 - adding a percentage for fringe benefits.

Labor Costs

- The fringe benefit percentage can be obtained using:
 - figures from payroll records or
 - roughly estimates.
- Labor costs may be computed on either a productive or scheduled machine hour basis. We usually use a SMH basis.

Labor Costs

- Many logging contractors pay their employees by:
 - day,
 - production, or
 - some combination of hourly rates with a production bonus
- These methods must be converted to either a \$/SMH or a \$/PMH.

Labor Costs (Example)

In the example, let's give a fringe benefit rate of 40% of wage. If the operator is paid \$6.50 per hour, labor costs are then calculated as follows:

Total Cost

To obtain the total hourly cost of operating sawhead feller-buncher in the above example, we combine our estimates:

```
Total Costs ($/SMH) = Fixed Cost + Variable Cost + Labor Cost
= $23.19/SMH + $29.73/PMH ×(0.65) +
$9.10/SMH
= $51.61/SMH
```


Total Cost

It can be also reported on the PMH basis.

```
Total Costs ($/PMH) = Fixed Cost + Variable Cost +
Labor Cost
= ($23.19/SMH)/0.65 + $29.73/PMH +
($9.10/SMH)/0.65
= $79.41/PMH
```


Pros and Cons of Machine Rate

(Advantages)

- Widely used and understood by nearly everyone associated with the timber harvesting industry
- Simple to perform and requires relatively little information
- Useful for discussing logging equipment and systems at meeting attended by group of competitors where violations of antitrust laws could potentially occur.

Pros and Cons of Machine Rate (Disadvantages)

- Neither income taxes nor the time value of money are included in the calculations.
- Costs for a machine are assumed to be a constant over the life of the machine.
- Costs computed with the machine rate are highly dependent on the assumed purchase price, salvage value, and economic life.

Combining Costs and Productivity

- An estimate of cost per unit volume of production.
- For the sawhead feller-buncher used in the earlier example, total hourly cost was \$51.61/SMH or \$79.41/PMH.
- Assuming that this machine could produce 37.4 cords per PMH, an estimate of cost per cord could be obtained as follows:

Combining Costs and Productivity

- So far we have only addressed the direct costs associated with logging.
 - such as the costs of felling, skidding, loading, and hauling.
- These costs are important and usually command most of a contractor's attention.
- These costs (or direct logging costs) often account for 65-85 percent of total costs.

- The remaining cost factors associated with logging are often labeled "indirect".
- These costs can account for the remaining 15-35% of the total.
- Lack of attention to these cost factors can also result in an operational loss.

Indirect logging costs are usually caused by:

- Moving expenses from one tract to another.
- Logging permits from local counties.
- Road and landing construction.
- Overhead expenses usually including:
 - office expenses,
 - legal and accounting services,
 - bookkeeping, and communications.

(Moving Expense)

- Is one of the most frequently incurred indirect costs for a logging contractor.
- Moving disrupts production in addition to incurring the actual costs of labor and fuel to move.
- Several approaches may be used to minimize such disruption, production losses, and costs:

WDSC 422

- Adequate pre-harvest planning
- Placing road in proper location

Indirect Logging Costs (Moving Expenses)

- Let assume a logger spends ½ day moving to a 65-acre tract with 23 cords per acre.
- He normally moves 10 loads per day, but loses 5 loads (9.5 cords/load) while moving.
- His current cut and haul rate is \$35/cord. Labor, equipment, and fuel costs come to \$1200 during the move.

Considering these costs, moving to this tract would cost this logger:

$$Cost / cord = \frac{5 \times 9.5 \times 35 + 1200}{65 \times 23} = \$1.91 / cord$$

(Moving Expenses)

If the logger could move after-hours and not lose the 5 loads of production, his moving cost per cord for the tract could be:

$$Cost / cord = \frac{1200}{65 \times 23} = \$0.80 / cord$$

However, if the logger has to move off the tract and later return, his moving cost would at least double:

$$Cost / cord = 2 \times 1.91 = $3.83 / cord$$

WDSC 422

(Permits, roads and landings)

- If the logger is moving to a tract, he will have to obtain permits and build road entrances.
- Assuming that the permits and road construction cost \$3000.

We compute the cost of permits and road as follows:

$$Cost / cord = \frac{3000}{65 \times 23} = \$2.01 / cord$$

Indirect Logging Costs (Overhead)

If a logger spends \$650 per month on supplies,

\$350 per month on radios and phones, and

\$2000 per month on a bookkeeper and office,

then total monthly overhead expenses would be \$3000.

Assuming that the logger moves 50 loads per week (475 cords), we could compute overhead costs per cord:

$$Cost / cord = \frac{650 + 350 + 2000}{475 \times 4} = \$1.58 / cord$$

