Site Damage from Timber Harvesting

- Timber harvest can affect a site and its productivity by impacting:
 - Soil
 - Water
 - Microclimate
 - Flora and fauna
 - Aesthetics and other concerns
What Are We Concerning?

- Even the BEST and most careful timber harvest does have impacts.
- The point is to
 - minimize the detrimental impacts and
 - optimize the beneficial impacts
- What we concern:
 - How do we assess damage to the site?
 - How do we prevent damage?
 - How do we correct or ameliorate damage?
Soil Impacts

- Any access or entry into a stand has the potential to disturb the forest floor and soil.
- This potential is increased with harvesting activities, especially skidding.
- Each time a skidder drives across a site, it alters the soil, generally by
 - compacting and/or
 - rutting the soil
What is Soil Compaction?

- Reduction in soil volume resulting from the application of force.
- Measured in bulk density increase.
Soil Compaction

- Four things to be remembered about compaction:
 - The greater the load, the greater the potential for compaction.
 - Loam-textured soils are more susceptible to compaction.
 - Most compaction occurs during the first several passes across a site.
 - Moist soils are compacted more easily.
Compaction
Ground Pressure vs. Tire Inflation

For pneumatic tires:
- Surface load is closely related to tire pressure.
- Low pressure tires have lower potential for compaction than high pressure tires.
Compaction
Bulk Density

- Compaction potential is the greatest when soils are wet but not saturated because:
 - soil strength is lower, and
 - open pores are available into which finer particles can be packed
Compaction
Bulk Density (g/cm³)

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Undisturbed</th>
<th>Intermediate</th>
<th>Heavily Disturbed</th>
<th>Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. Sand</td>
<td>0.75</td>
<td>0.92</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>S. Cl Sand</td>
<td>1.21</td>
<td>1.42</td>
<td>1.55</td>
<td>S. Cl Sand</td>
</tr>
<tr>
<td>S. Loam</td>
<td>1.57</td>
<td>1.82</td>
<td>1.86</td>
<td>S. Loam</td>
</tr>
<tr>
<td>S. Cl Loam</td>
<td>1.14</td>
<td>1.36</td>
<td>1.52</td>
<td>S. Cl Loam</td>
</tr>
<tr>
<td>S. Cl Loam</td>
<td>1.36</td>
<td>1.43</td>
<td>1.55</td>
<td>S. Cl Loam</td>
</tr>
<tr>
<td>Loam</td>
<td>1.03</td>
<td>1.01</td>
<td>1.17</td>
<td>Loam</td>
</tr>
<tr>
<td>Loam</td>
<td>1.25</td>
<td>1.5</td>
<td>1.5</td>
<td>Loam</td>
</tr>
</tbody>
</table>
Compaction

Soil Compaction vs. No. of Passes

Bulk Density (g/cm³)

Once soil strength has increased to support a load, additional passes have little additional effect.
Compaction

- Most compaction occurs during the first few passes.
- It is usually best to concentrate on skidder activity or use designated skid trails.
- Skid trail can range from about 20% to more than 50% of the harvested area.
- Roads and landings occupied 10.3% on Appalachian logging sites (Kochenderfer 1977).

![Graph showing Bulk Density (g/cm³) vs Number of Passes](chart.png)

Once soil strength has increased to support a load, additional passes have little additional effect.
Compaction
How can we prevent or minimize damage?

Plan ahead! Five key recommendations:

- Know the soil on which you operate and plan accordingly
- Match equipment to site
- Minimize traffic intensity
- Follow BMPs and any restrictions that may apply
- Conserve organic matter and nutrients
Water Impacts

- Timber harvest can affect the hydrology of a site, especially:
 - the quantity,
 - the quality, and
 - the timing of water within or from a watershed
Ongoing silvicultural activities such as timber harvesting are *non-point sources* of pollution rather than point sources. Their impacts, dispersed across the landscape, are much tougher to assess and control than impacts from most *point sources*.
In West Virginia, WV DOF assesses compliance with WV’s BMPs by:

- visiting sites,
- observing operations from the air, and
- conducting surveys.
Water Damage Assessment and Control

- Although the BMPs are voluntary guidelines, the loggers should follow them.
- If the sediment is originated from your site, and you have not made a legitimate attempt to protect the water resource, you can be
 - stopped,
 - fined, and
 - prosecuted.
Water

How can we protect the water resource from a harvest?

- Schedule the harvest to avoid the wet season
- Plan access carefully, and minimize traffic intensities on the site
 - Landings, decks, staging and servicing areas need to be considered too.
- If you must cross the stream, what kind crossing will you need?
Methods of Determining Soil Compaction and Disturbance

- Visual estimate
- Visual simulation
Factors Affecting Soil Disturbance/Compaction

Three major factors:

- Soil type
- Logging system
- Moisture condition
Soil Disturbance Category

- SD1 – Little or no disturbance
- SD2 – Compaction likely
- SD3 – Area is rutted, ruts are less than 8” deep
- SD4 – Area is rutted, ruts are 8” deep or more
- SD5 – Area is churned

Source: Carruth and Brown (1996).
Travel Intensity

TI1 - Trees on the plot have been felled.
TI2 - Trees which stood on the plot have been removed and no other traffic has passed through the plot.
TI3 - Passes with a loaded machine are between three and ten.
TI4 - More than ten loaded machine passes have been made through the plot.

Source: Carruth and Brown (1996).
Percentage of SD3 and Higher (Soil Moisture < 40%)

Source: Carruth and Brown (1996).
Percentage of SD3 and Higher
(Soil Moisture $\geq 40\%$)

Source: Carruth and Brown (1996).
Visual Simulation

- The use of a graphical user interface to provide input on:
 - machine and landing locations, and
 - the size of payload
- The size and location of trees within the stand and the equipment being used are shown to scale on the computer screen.
Extraction Patterns

Skidding Pattern 1
- Tree or log bunches
- Machine paths
- Landing

Skidding Pattern 2
- Skid trail
- Tree or log bunches
- Machine paths
- Landing

Skidding Pattern 3
- Skid trails
- Tree or log bunches
- Machine paths
- Landing

Forwarding Pattern 1
- Tree or log bunches
- Machine paths
- Landing
Skidding with No Trails
Skidding with One Trail
Skidding with Two Trails
Forwarding Direct to Road
Travel Intensity Levels by Machine and Method (%)

<table>
<thead>
<tr>
<th>Travel Intensity</th>
<th>No Trail</th>
<th>One Trail</th>
<th>Two Trails</th>
<th>Forward</th>
</tr>
</thead>
<tbody>
<tr>
<td>TI1</td>
<td>20</td>
<td>22</td>
<td>34</td>
<td>69</td>
</tr>
<tr>
<td>TI2</td>
<td>21</td>
<td>49</td>
<td>47</td>
<td>22</td>
</tr>
<tr>
<td>TI3</td>
<td>27</td>
<td>27</td>
<td>13</td>
<td>8</td>
</tr>
<tr>
<td>TI4</td>
<td>32</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>
Travel Intensity Levels by Machine and Method (%)
A Recent Study on Soil Compaction in WV

- Document and compare
 - Soil compaction
 - Two systems
- Two sites
- Location
 - Mead-Westvaco
 - Randolph County, WV
- Summer, 2002
Site Conditions
(Manual Harvesting Site)

- 31 acres
- Selection Cut
- 30-40 % slope
- 3,595 BF/ac
- Mixed Hdwds
- Gilpin series (GkE) and Buchanan (BtE)
- Summer, 2002
Site Conditions
(Mechanized Harvesting Site)

- 34 acres
- Clearcut
- 15-25 % slope
- 5,765 BF/ac
- Mixed Hdwds
- Buchanan (BtE), Gilpin (GdE), and Lily (LyC) series
- Summer, 2002
Sample Plots

- **Plots across the site**
 - 30 locations installed for each site
 - systematically laid out using a grid of 3 by 3 chains
 - Four samples taken at each location at random direction and distance

- **Points in the road**
 - Six samples taken at each cross section of the road
 - 10 cross sections on manual site and 14 sections on mechanized site
 - First four cross sections also for compaction vs. the number of loaded machine passes
Harvesting Systems

- Two ground-based systems
- Manual
 - Chainsaw
 - Cable skidder
 - Bulldozer
- Mechanized
 - Feller-buncher
 - Grapple skidder
Data Collection

- GPS and wooden poles for locations
- Troxler™ - surface density and moisture gauge
 - Dry density (lbs/ft³)
 - Wet density (lbs/ft³)
 - Soil moisture (%)
 - Six inches deep from the top of soil surface
- www.troxlerlabs.com
Results

- Average compactions of 6.08 lbs/ft3 across the site and 9.35 lbs/ft3 in the skid roads were presented on the manual site.
- The average compactions were 1.82 lbs/ft3 across the site and 7.88 lbs/ft3 in the roads on the mechanized site.
- The compaction was significantly different between the two harvesting systems.
- Manual system caused more soil compaction than the mechanized system, mainly due to site and machine conditions, soil types, and weather conditions.
Results
(Bulk density vs. no. of loaded machine passes)
Results
(Compaction vs. no. of loaded machine passes)