

Processing

WDSC 422

Processing

•Felled trees should be processed for transport from harvested sites.

Processing includes:
Delimbing,
Topping, and
Bucking.

Objective of Processing

- •To produce the products desired by the marketplace with:
 - acceptable product quality,
 - a minimum of fiber or value loss, and
 - an acceptable per unit cost.

The logger's objective should be to:
"merchandize" all harvested products to the markets,
bring the highest possible value.

Processing

• Product types depend on species being processed and the end product specification.

• Basically, three types:

- Tree-length
- Logs

• Chips

• The most common products delivered to markets in the Central Appalachia or West Virginia are logs with different lengths.

Potential Processing Loss

•To loggers:

• If timber has been purchased on a lump-sum basis, inattention to bucking decisions can create a financial loss to the logger or timber buyer.

•To landowners:

• When timber has been purchased on a "per unit of volume" harvested basis, the loss associated with miss cut logs is borne by the landowner.

Delimbing

- Sawing branches from a felled tree is known as delimbing.
- Depending on the operational requirements, it is done:
 - prior to the bucking and skidding operations
 - either in the woods or at landing
- Two delimbing methods:
 - Manual
 - Mechanical

Manual Delimbing

- Prior to the development of chainsaws, delimbing was primarily performed by:
 - oaxe, and
 - single-man crosscut saw
- •Nowadays, chainsaws:
 - are the only major manual delimbing tools in North America.
 - are smaller and lighter than saws normally used for felling trees.

Manual Delimbing

•Hazardous but also fatiguing

- •Extremely flexible:
 - Can be used in a wide range conditions at the stump or on landing
 - Can be used to delimb both hardwood and softwood species
 - Is capable of handling poorly formed trees

Mechanical Delimbing

• Mechanized equipment

• More suited to delimbing softwood stems with straighter boles and smaller limbs than large limbed hardwoods.

• Four categories:

- Single-stem delimbing with lengthwise feeding
- Single-stem delimbing with transverse feeding
- Multi-stem delimbing with lengthwise feeding
- Multi-stem delimbing with transverse feeding

Delimbing Methods

• Most mechanized delimbing equipment uses lengthwise feeding.

• The most productive method should handle multiple stems.

• There are about five conventional mechanical delimbing methods used in the eastern United States.

Mechanical Delimbing Methods

- Delimbing gate or grid
- Pull-through delimber
- Stroke delimber
- Grapple processor
- Chain flail delimber

Delimbing Gate or Grid

- The most popular mechanized multi-stem delimbing method used in the South.
- Consists of a tubular steel grid that is:
 - either free-standing on steel legs
 - or supported by chaining it to trees

Delimbing Gate

- To delimb, the grapple skidders
 - pull a load of pine trees in front of the gate and
 - back the bunched trees into grid
 - limbs are broken off as stems pass through the square openings of the gate

Delimbing Gate

- Handles multiple stems quickly and effectively
- Requires only a small capital investment
- Cannot delimb very well for small trees
- Hardwoods with large limbs cannot be delimbed in the gate.

Delimbing Gate

- Requires a large area to be set aside near the landing for delimbing.
- Skidder traffic is concentrated in this area.
- Quality is often poor.
- Additional chainsaw delimbing is required in some cases.

Pull-through Delimber

- Consists of an inverted grapple
 - with delimbing knives on one side of the grapple
 - mounted on a knuckleboom loader

After the loader operator lays a tree in the grapple,

- the knives are hydraulically clamped against the stem
- tree is pulled through the device.
- the delimbing knives shear off the limbs as the operator pulls the tree through.

Pull-through Delimber

WDSC 422

Pull-through Delimber

- Is relatively inexpensive to purchase (\$30,000)
- Is powered by the loader's hydraulic system
- Reduces the loader's productivity
- Many loggers use it to mechanize the final delimbing work

• Safety of the operation is improved

Stroke Delimbers

- •Have been used in Canada for years where delimbing at roadside is common.
- Are usually mounted on tracked carriers such as excavators.
- •Use the same delimbing principles as pullthrough delimbers, except
 - the tree remains stationary and the knives are moved along the stem.

Stroke Delimbers

- The knives are mounted on a boom
 - which extends along the length of the stem,
 - delimbing the stem as the knives move across limbs
- Topping and bucking functions can also be performed by the stroke delimber equipped with a chainsaw or attachment.
- Bucking decisions are often aided by length measurement devices

Stroke Delimbers

WDSC 422

Stroke Delimber

WDSC 422

Stroke Delimber

- Tracked carrier has slow ground speed,
 - thus most stroke delimbers typically work at fixed locations along roads or on landings
 - skidders bring them full trees
- As a result, skidder traffic is concentrated in a specific area and large piles of debris tend to accumulate.
- Is quite expensive to purchase (\$200,000+).

Grapple Processor

- Performs both delimbing and bucking functions
- Uses the techniques similar to pull-through and stroke delimbers
- A grapple processor resembles
 - the grapple of a knuckleboom loader
 - with the addition of feed rollers, delimbing knives, and a topping/bucking saw

Grapple Processor

- The operator picks up trees with the grapple
- The feed rollers push the tree horizontally through the grapple
- Limbs strike the delimbing knives on the inbound side

• The saw on the outbound side buck the stem to logs

Chain Flail Delimber

This is the Peterson Pacific Corp. DDL 5200-B, a self-loading portable Flail Delimber/Debarker.

West Virginia University,

WDSC 422

26

Chain Flail Delimber

- Not only delimb but also debark stems
- Clean stems can be provided to produce "clean" fiber chips in the woods
- Is often used today with whole-tree chipping operations
- Can also be used to delimb roundwood products
- Can be mounted to a rubber-tired loader

Comparisons (Manual and Mechanical Delimbing)

- Manual:
 - Flexible
 - Low capital
 - Labor intensive
 - Hazardous
 - Expensive to insure workers
- Mechanical:
 - Multiple stems

Bucking and Topping

•Bucking is the process to:

- cut a tree-length stem into logs, bolts or random lengths
- make preparation for skidding, forwarding, yarding, or hauling
- Topping is essentially the last bucking cut that removes the undelimbed top portion of the tree.

Bucking and Topping

Both functions can be performed:
manually with chainsaws or mechanically
at the stump or on landing

•Bucking in WV:

- Bucking with a sawbuck attached to a loader is a typical description in WV.
- In some other cases, bucking is also done with chainsaws.

Mechanized Bucking Methods Slashers and sawbucks

- Slashers and sawbucks are the most common mechanized methods of bucking.
- These operate in conjunction with a loader at the landing.
- Are relatively inexpensive to purchase, and
- Require minimal maintenance to operate.

Sawbuck

WDSC 422

Factors Affecting the Bucking Operations

- •Timber size
- Market demands
- •Equipment limitations
- •Transportation restrictions
- Log grades

Bucking Decisions

•Bucking decisions are critical to:

- o correctly manufacturing a log,
- maximizing the value produced from each tree
- maximizing the value of a stand, and
- recovering the money spent on purchasing the tract of timber.

Bucking Options

Tree stem: DBH 14 inches Weight o.b. 4" top 1,447 lbs. Weight o.b. 8" top 1,248 lbs.	Pulpwood Price Chip-n-saw Price Plylog Price	\$11/ton \$24/ton \$34/ton
Scenario #1: 33' of plylogs, remainder pulpwood	Plylog 0.62 tons Pulpwood 0.11 tons	\$21.22 \$1.20
	Total stem value	\$22.42
Scenario #2: 33' of chip-n-saw, remainder pulpwood	CNS's 0.62 tonsPulpwood 0.11 tonsTotal stem valuePercent value lost	\$14.98 \$1.20 \$16.18 28%
Scenario #3: Entire stem sold as pulpwood	Pulpwood 0.72 tonsTotal stem valuePercent value lost	\$8.07 \$8.07 64%

What is Chip-N-Saw?

- Registered trade name for a machine that • makes small logs into cants,
 - converts part of the outside logs directly into chips without producing any saw-dusts
 - cants are then sawn into lumber as part of the same operation

