Harvest Planning

A harvest planning is necessary because:

- Timber harvesting is an extremely complex operation.
- Today’s logging contractors also need to:
 - Consider the production and costs,
 - Comply with numerous laws and regulations, and
 - Incorporate BMP’s into logging operations.

Harvest Planning

- There are two stages of harvest planning:
 - preliminary pre-harvest planning
 - comprehensive harvest planning
Preliminary Planning

- Is a fairly simple plan and prepared:
 - by a ‘service’ forester or forestry consultant
 - for a forest landowner prior to conducting a timber sale
Preliminary Planning

- It normally identifies:
 - recommended streamside management zones,
 - potential problem areas like fragile soils or steep slopes, and
 - other areas that may require special treatments during harvesting operations
Comprehensive Planning

- A comprehensive harvest plan is much more complex and detailed.
- It is usually prepared by **the logger** or logging manager just prior to beginning harvesting operations.
The logging plan may include recommendations on:

- logging roads,
- log decks,
- streamside management zones,
- stream crossings,
- skid trails, and
- schedule of activities.
Information Needed for Harvest Planning

- Type of cut
- Terms of timber sale contract
- Tract topography
- Tract soil conditions
- Tract hydrology
- Tract boundaries
- Timber volumes to be removed
- Logging system and equipment
- Applicable laws and regulations
The type of cut can be:
- clearcut,
- thinning, or
- partial cuts

Will trees be removed from streamside management zones (SMZ’s)? This could affect:
- deck size and location,
- equipment restrictions or
- job layout
Terms of Timber Sale Contract

- The length of time on the contract may dictate the time of year that the tract will be logged.
- That may impact the haul road construction standards.
Tract Topography

- In the mountains, topography will often limit logger’s options for road and deck locations.
- In addition to slope, aspect and exposure should also be considered.
Tract Soil Conditions

- Soils will affect road and deck location, especially in the fragile regions such as steep slopes and SMZ’s.
- Soils also impact equipment decisions and scheduling of activities.
Knowing how much water to expect in a stream after a big rain will affect decisions on stream crossing structures.
Tract Boundaries

- The tract boundaries, easements, and rights-of-way are necessary to locate access points and haul roads.
Timber Volume

- The timber volumes to be removed by species and product, and
- The distribution of those volumes across the tract.
- They are vital for determining:
 - haul road standards,
 - deck size and location, and
 - scheduling
Logging System and Equipment

- The planner has to consider:
 - logging system and equipment in harvest planning
 - characteristics of the logging operational constraints
Logging System and Equipment

- For example,
 - Four wheeled feller-bunchers are suited to clearcutting.
 - Cable skidders are good for manually felled larger timber.
 - The type of log truck (tractor/trailer, or ...) will also impact:
 - haul road layout,
 - acceptable curve radius, and
 - landing size.
Laws and Regulations

- Applicable laws and regulations affect logging, including BMPs.
- These will affect all aspects of the harvest plan.
Maps for Planning

There are several maps available to harvest planners:

- **Topographic maps** - from the U.S. Geological Survey
- **Soil maps** - from the Soil Conservation Service
- **A detailed timberstand map** - from the owner
- **County ownership maps** - are available commercially
Steps to Prepare a Harvest Plan

- The following twelve “steps” provide a possible framework for a comprehensive harvest plan.
Step 1

- Study the applicable maps and conduct an on-the-ground reconnaissance of the area to be logged.
 - Note the slope, aspect, soil, timber, stream, access, boundaries, old logging roads, etc.
Step 2

- Identify and mark streamside management zones (SMZ’s).
 - is one of the most important and effective ways to reduce stream sedimentation in a logged area
 - should be implemented whenever possible
 - should note that SMZs are:
 - low cost (to the logger)
 - highly effective
Step 3

- Locate and flag log decks.
 - These are critical decisions that will directly affect production.
 - Log deck location is a tradeoff between skidding distance and haul road construction.

- Log decks:
 - should generally be kept as small as feasible, and
 - should be well “daylighted” to facilitate drying out after a shower.
 - an ideally located log deck will be on a slightly sloped area with stable soils that do not easily rut.
Step 4

- Locate and mark logging road stream crossings.
 - Choosing proper location is critical (if a stream crossing is necessary).
 - Look at stream width, water depth, stability of stream bottom and banks, and high water mark.
 - Choose location that will minimize the chance of stream sedimentation arising from logging as well as hauling.
Step 5

- Locate and mark logging road entrance points from public roads.
 - Generally, the law requires that a truck driver pulling onto the highway from a temporary logging road be able to see clearly in either direction for a minimum of 200 feet.
 - Entrance points should always be located on well-drained, stable soils.
Step 6

- Locate any other logging road “control” points.
 - These are points or locations that logging road must either connect or avoid.
 - Entrance points and stream crossing are “positive” control points, and
 - Rock outcrops or gumbo clay flats are “negative” control points.
Step 7

- Locate and flag the logging road gradeline (in the mountains) or centerline (in flat areas).
 - A good procedure is:
 - first attempting to plot the gradeline on a topo map,
 - connecting the positive control points, and
 - keeping the road at an acceptable grade.
 - Ideally, the grade should be kept at:
 - 10% or less for haul roads
 - 15% or less for skid roads
 - The gradeline (centerline) location must consider log truck (or skidder) characteristics.
Step 8

- Locate and flag designated skid roads/trails, if necessary.
 - In general, designated skid trials should be avoided if at all possible,
 - They greatly increase:
 - environmental impact
 - chance of erosion and stream sedimentation
Step 9

- Specify logging road construction standards.
 - There are generally three logging road standards:
 - “primary” logging or forest road
 - “secondary” logging road
 - “branch” logging road
 - The most common by far is a “branch” logging road.
 - It is designed as temporary road that will be “retired” immediately after logging is completed.
Step 10

- Specify stream crossing structures, if applicable.
 - The common choices from least to most expensive are:
 - A ford,
 - A culvert,
 - A “low water” bridge, and
 - An elevated timber bridge.
 - The best choice depends on:
 - cost,
 - stream characteristics,
 - the amount of use,
 - load bearing requirements, etc.
Step 11

- Determine the schedule of operations and harvest patterns.
 - This step is especially critical on a large tract.
 - The most efficient schedule of operations depends on:
 - tract topography,
 - time of year,
 - road construction,
 - cash flow conditions,
 - mill needs,
 - equipment, etc.
Step 12

- Specify tract “close-down” requirements.
 - These primarily involve the implementation of BMP’s.
 - The requirements include:
 - Re-grading ruts
 - Installing water-bars
 - Reseeding certain landings and roads
 - Removing any temporary stream crossing structures
 - Cleaning-up the tract
Safety

- Safety must remain a constant consideration through the harvest planning process.
- Every decision made by harvest planners will have safety implications, from location of a log deck to scheduling of activities.
Planning Forest Access System

- Roads and landings are the source of most water quality problems on logged areas.
- Roads are the most permanent disturbance on logged areas.
- On skidder logged area, 84% of disturbance is caused by skidroads.
- The farther roads, landings and machines are kept from stream, wet areas, the better.
- The steeper the roads the more difficult it is to control water on them.

(WVDOF. 1992. A logger’s guide to planning the forest access system. WVDOF-MP92-8)
Planning Forest Access System

- A typical 100-acre tract will require about 5 miles of road to skid logs.
- This includes:
 - about 0.5 mile of haul road and
 - 4.5 miles of skid roads.
Planning Forest Access System

Four basic aspects should be considered.

- Preliminary Considerations
- Hydrologic Considerations
- Logging Considerations
- Construction and Maintenance Considerations
Preliminary Considerations

- The location of the timber to be harvested
- How it will be logged: haul road or skidroad
- Planning the road system for the entire tract
- Discussing the road system with landowner
- Deciding where the truck road will start and end
- Future road needs
Hydrologic Considerations

- Maximizing distance from streams, wet areas
- Minimizing the amount of soil disturbance
- The road grade –
 - 10% maximum for haul roads,
 - 15% maximum for skidroads
- Stream crossing
- Landing location
Logging Considerations

- Turnouts and turnarounds
- Existing highway approaches
- Getting off truck road with skidroads, where and how
- Skidroad spacing
- Landing location
- Road location in relation to timber
Construction and Maintenance Considerations

- Desired road standard
- Rock outcrops
- Stream crossing
- Drainage
- Exposure (aspect)