In-woods Chipping

- Popular in the early 1970's
- Big demand for pulp fiber and wood for industrial fuel

In-woods Chipping

Chippers:

- Produce whole-tree chips
- Grind/chip the entire above ground portions of trees including limbs and tops

Two advantages:

- Provide economical opportunities for converting stand types
- Reduce site preparation costs considerably

WDSC 422

In-woods Chipping

- When chain flail debarkers were introduced in the late 1980's,
 - "clean" chips could be produced, and
 - many mills (in the South) now purchase significant volumes of these chips
- Without whole-tree chipping,
 - the woody material is left on site
 - it is usually in large piles adjacent to the roadside landing

WDSC 422

What is a Chipping System?

- A chipping system is a tree-length system with extra equipment – chipper, debarker, and chip van.
- A chipper typically
 - Costs \$250,000 to \$325,000 to purchase, and
 - Needs a highly mechanized harvesting system to support it

A Typical Mechanized Whole-tree Chipping System

(Source: Greene and Reisinger 1999) WDSC 422 Chipping and Wetland Systems

Chipping System

Whole-tree Chipper

The DDC 5000-G whole-tree chipper is made by Peterson Pacific Corp.

Chipper

Crew Organization Mechanized Whole-tree Chipping System

Total 14 people

Production:

- 2 Feller-buncher operators
- 3 Grapple skidder operators
- 1 Debarker operator
- 1 Chipper operator
- 5 Truck drivers

- Support:
- 1 Foreman
- 1 Maintenance person

Equipment Mechanized Whole-tree Chipping System

Capital investment \$1.25 – 1.50 million

Production:

- 2 Hydro-Ax 411 Feller-bunchers
- 3 Timberjack 450B Grapple skidders
- 1 Peterson Pacific Chain flail debarker
- 1 Morbark 22 RXL Chipper
- 5 Mack Truck tractors
- 8~10 Van trailers
- Support:
 - 1 Maintenance/parts truck
 - 1 Fuel/oil truck

Productivity Mechanized Whole-tree Chipping System

- 8 10 van loads/day (24 tons/load)
- 960 1200 tons/week (5-day work week)

Hot vs. Cold Operations

- Hot operations little time or inventory between functions.
- Cold operations more or substantial time or inventory between functions.
 - keep longer time of timber in woods
 - have problems of moving of feller-buncher or other machines
 - can dry a little of wood

Chipping?

Chipping operation is a hot logging operation.

Clean vs. Dirty Chips

- Clean chips less than 2% bark.
 - Making paper
- Dirty chips more than 2% bark.
 - Mainly using for fuel

Uniformity of Chips

- Uniform chips are required to make paper
- The uniformity is identified by:
 - Chip size, thickness, and length
- And determined by:
 - The number of knives in the chipper
 - Knife angle
 - Revolution per minute

Pros and Cons In-woods Chipping

- The advantages of chipping are:
 - Socially accepted the chipping van vs. log trailer
 - Good for site preparation
- However, it requires:
 - Larger landing
 - Higher break-even production
 - Larger sale
 - Lots of capital and more equipment

Wetland Systems

- Wet soil can:
 - reduce operational efficiency
 - affect costs and profits
- Unacceptable residual effects on the site also degrade:
 - site productivity,
 - water quality, and
 - aesthetics.

Wetland Systems?

- The forest industry and loggers realize the value of minimizing site damage.
- They are looking for low-impact harvesting systems – wetland harvesting systems.

Wetland Systems

- New cost-effective and environmentally acceptable methods include:
 - Feller-bunchers (tracked or wide tires),
 - Larger forwarders
 - Clambunk skidders
 - Two-stage hauling, or mats
 - Cable systems
 - Helicopters
 - Towed vehicles and air-cushioned vehicles

WDSC 422

Felling on Wet Sites

⁽Source: Stokes and Schilling 1997)

- Use swing, tracked fellerbunchers
- Costly, reduce disturbance
 - by limiting the amount of travel on the site and
 - by using wide tracks
- On extremely wet sites, portable mats can be used
 - to increase mobility on the site
 - to reduce the amount of site disturbance

Felling on Wet Sites

- Integrating limited processing and piling into the felling function
 - can reduce the subsequent negative effects of removing the felled trees from the site.
- A grapple-saw on a tracked feller-buncher
 - is a new development to be tested for felling on such difficult terrain.

Skidding on Wet Sites

⁽Source: Stokes and Schilling 1997)

- In the 1970's, flexible track machine,
 - adapted from the military,
 - was designed for wet site applications.
- Due to the cost of tracked machine,
 - the skidder with wide tires was later introduced.
 - it is a widely accepted method.

Skidding on Wet Sites

- <u>Rubber-tired cable-grapple</u> <u>skidder</u> is an option for use on wet sites because:
 - the cable skidder is able to operate under extremely difficult conditions and
 - the grapple skidder is highly productive and relatively safe
- Using dual tires is another option to improve the skidding floatation on wet sites.

Cable-grapple Skidder

Skidding on Wet Sites

- The use of clambunk is becoming more feasible.
- A recent introduced four-wheel drive clambunk skidder:
 - is capable of skidding a load of about 14 tons
 - has been successfully used to skid felled trees with the distance of about a mile

Clam-bunk Skidder

Skidding on Wet Sites (two-stage hauling)

- In Stage I, in the woods
 - uses conventional rubber-tired skidders or clambunk skidders
 - skids to a remote landing
- In Stage II, at the remote landing
 - logs are loaded onto a tree-length forwarder
 - load is carried long distances to an all-weather road
 - then the load is put onto a haul truck

Skidding on Wet Sites (two-stage hauling)

- Reduces road construction dramatically
- Keeps skidding distances at a productive level

Forwarding on Wet Sites

- Large forwarder
 - has larger payload
 - reduces the number of passes required on the same trail

Forwarding on Wet Sites

- Tree-length forwarder with wide tires:
 - moves payloads of up to 22 tons
 - has a loaded static pressure
 - is able to move felled timber up to distance of 5 miles

Forwarding on Wet Sites

In eastern Canada, wide-tired forwarders have shown:

- Increased access to timber without building roads
- Improved stability, safety, and comfort
- Adaptability to wet season logging
- Less maintenance and higher productivity
- Reduction of residual damage to the site

Aerial Systems on Wet Sites

- Helicopters are being used more frequently on wet sites.
- They cause the least site disturbance except for building of decks and roads.

Aerial Systems on Wet Sites

- May be cost-effective in certain situations
- Are not the answers to all the problems of harvesting wet sites
- Because of their:
 - higher costs,
 - material and weather sensitivity, and
 - implementation problems

Helicopters

Other Harvesting Methods

- Towed vehicles
- Special matting and lifting devices
- Air-cushioned vehicles
- However, more research is required to
 - Completely understand these methods
 - Properly select and apply the technology as it is developed