

Elemental Time Studies

- Elemental time studies record times for machine activities:
 - from continuous observation of the machine
 - for a longer period of time
- Machine time is divided into elements.
- Each element:
 - has clearly recognizable starting and ending points

WDSC 422

allows consistent timing in the field

Elemental Time Studies

- For example, the activities of a cable skidder are commonly broken down into the following elements:
 - Travel empty
 - Choking logs
 - Travel loaded
 - Unchoking logs
 - Deck maintenance
 - Delays
 - These elements make up a skidder's work cycle.

WDSC 422

Elemental Time Studies

- To determine the productivity of a cable skidder, we need to know:
 - time and payload in each work cycle
 - skidding distance, slope, ground conditions,
 and other variables associated with the cycle
- With enough data, cycle time could be predicted from one or more of these measured variables.

Elemental Time Study

Example for a Cable Skidder

- Cycle time (min.)= 9.918+0.0049SD-0.0000006SD²+0.0338TV
- Productivity (ft³/PMH) =196.771-0.096SD+0.00001SD²+2.2425TV

SD = average skidding distance (feet)

 $TV = turn volume (ft^3)$

PMH = productive machine hour

(Source: Wang et al. 2004)

Elemental Time Study

- Can be used to provide detailed and unbiased information.
- However, this method requires trained operators and can be costly and time consuming.
- Field personnel may have to work close to a machine and are placed in a dangerous position.

Productivity

For a skidder using equation developed from elemental time study

(Source: Wang et al. 2004)

Comparisons

Time Study Methods

- Each of three time study methods is a useful tool for examining logging operations.
- The selection of an appropriate time study technique depends on
 - the information you need,
 - the type of operations to be studied, and
 - the personnel and equipment available to do the task

Comparisons

Time Study Methods

- Well planned and designed gross time studies and work samples
 - can yield a substantial amount of information
 - do not have the complexity of performing elemental time study

Comparisons

- Graphically illustrates the relationships among three time study methods.
- Covers 35 minutes of scheduled time for a grapple skidder.
- Five turns of wood are delivered to the landing during this time period.

Relationships of Three Methods

Gross Time Study

(Example)

Elapsed Time (minutes)	Payload (cords)	Productivity (Cords/PMH)
6.50	0.64	5.91
7.50	0.54	4.32
7.00	0.68	5.83
5.00	0.56	6.72
9.00	0.70	4.67
Mean=7.00	0.62	5.49

Work Sample Study

(Example)

Element	Obs	Observed %	Actual %
Travel Empty	3	30	20
Grapple Logs	2	20	16
Travel Loaded	3	30	36
Delimb Stems	2	20	9
Ungrapple Logs	0	0	7
Deck Maintenance	0	0	1
Delays	0	0	11
Total	10	100	100

Elemental Time Study

(Example)

Element	Elapsed Time (min.)	Percentage
Travel Empty	7.00	20
Grapple Logs	5.50	16
Travel Loaded	12.50	36
Delimb Stems	3.00	9
Ungrapple Logs	2.50	7
Deck Maintenance	0.50	1
Delays	4.00	11
Total	35.00	100

Regression Models

Estimating Production

- Least square regression modeling has long been an efficient, accurate method of estimating and predicting forestry data.
- It is very common to employ regression modeling to estimate tree volume based on tree diameter (DBH) and total height.

Estimating and Predicting

- Estimation involves the calculation of means and other statistics about a population from which the samples were drawn.
- Prediction on the other hand is determining what will happen in the future based on past experiences.

In tree volume example, estimate and predict?

Timber Harvesting Data

- First requires an understanding of what we want to accomplish.
- Our goal is usually to:
 - develop estimation equations
 - predict machine production rates production
 per unit time under a variety of conditions

- Three types of data for each work cycle should be produced by time and production studies:
 - Times
 - Units of production
 - Work conditions

- An example for feller-buncher's productivity:
 - We would like to know how many cords per hour a FB would produce.
 - Working under a set of conditions, say trees with DBH's from 4-22 inches.

(Times)

- Time cycle is a period of time for felling a tree or several trees.
- Times collected during elemental time studies may include such times as:
 - Move-to-tree
 - Position and cut
 - Move-to-dump
 - Dump and delays

(Production and Condition)

- The production of each cycle is the volume or weight of the tree or trees.
- The work conditions surrounding that tree are things like:
 - tree size,
 - slope, and
 - other terrain conditions

Procedures

for Regression Modeling

- A time study of feller-buncher should include several hundred cycles or trees.
- Procedures:
 - Means
 - Plotting Data
 - Fitting Models
 - Testing Fits

Data Format

DBH	Fell-Time (min.)
13	0.5963
16	0.3449
17	0.9708
14	0.6542
13	0.4615
13	0.3748
18	0.9076
14	0.9530
9	0.3259
13	0.6446
13	1.2029
13	0.3909
14	0.6322

Means

- One way to calculate productivity is to add all times together and all volume together and divide the sums to get average volume per hour.
- Means are limited to the set of conditions observed.
- Means just give you the overall average productivity.

Plotting Data

- Trees in the example are not in the same size.
 - DBH ranged from 4 to 22 inches.
 - It takes more time for a FB to cut a large tree than a small one.

Plotting Data

- We calculate the average time for each-inch DBH and draw the plot.
- Now, instead of having the overall average time per tree, we have average time for each DBH class.

Data Plot

Fitting the Model

Remove an outlier from the dataset.

Regression Modeling Tool

SAS Programming

```
data FB;
     infile 'e:\wjx\teaching\wdsc132\labs\Bell fb.dat';
     input DBH time;
     data FBReg; set FB;
     if time=1.4737 then delete;
     dd=dbh*dbh;
     proc reg;
     model time=dbh;
     pro reg;
     model time = dd;
     run;
```


Regression Models

Testing Fits

Based on:

- R-Square checks the correlation of independent and response variables, $0 < R^2 \le 1$.
- Root MSE is the root of mean squared sum of errors. The smaller the better.
- <u>F&P values</u> are the probabilities to check the significance of variables and the model.

Which Equations to Use?

- Where the study was conducted?
- What sizes of the trees were harvested?
- What was the range of work conditions?
- What were the terrain and weather conditions?
- What products were harvested, both species and type?
- Which machines and models were used?

