

WDSC 422 Harvesting Forest Products

Dr. Jingxin Wang 317E Percival Hall (304) 293 7601 jxwang@wvu.edu

Something about Logging

"As a matter of taste, I admit to liking loggers better than environmentalists."

John McCarthy, Professor Emeritus of Computer Science at Stanford University

"No Logging – No Mills – No Jobs Support Sustainable Forestry America Depends On It"

Distributed by the Pulp & Paper Workers' Resource Council

Class Notes

http://www.wdscapps.caf.wvu.edu/JXWang/courses/ WDSC422.html

- Syllabus
- Class Notes
- Lab Assignments
- Homework Assignments

Introduction and Terminology

- Timber harvesting is an integral step in the management of most forests.
- Harvesting timber products sawlogs, veneer logs, or pulpwood can be logically classified into two ways:
 - Desired result of a management plan
 - Part of total manufacturing process

Some Terms

- Feller-buncher self-propelled machine designed to fell standing trees and arrange them in bunches.
- Harvester self-propelled multifunction machine that may be capable of operating as a swath cutter but also performs processing in addition to felling.
- Skidder self-propelled machine designed to transport trees or parts of trees by tracking or dragging.
- Forwarder self-propelled, self-loading machine designed to transport the stems or logs by carrying them completely off the ground.

Some Terms

- Cut-to-length bolewood components of a tree, cut to desired lengths.
- Full-tree All components of a tree, except for the stump.
- Tree-length Entire tree, excluding the unmerchantable tops and limbs.
- **Log** Eight-foot or longer tree segment.

Phases of Timber Harvesting

Cutting

- 1. Purchasing and management
- 2. Tree marking
- 3. Felling
- 4. Delimbing, bucking, bunching
- 5. Loading, terrain transport, and unloading
- 6. Truck hauling, railway transport or floating

Logging

Harvesting

Procurement

Brief History

- Radical changes during the 20th century
- Harvesting methods used in 1900 were very similar to those used 200-300 years earlier.
- Most of these technological changes have taken place since WWII, specifically in the past 50-60 years.
- As affected by railroad and all-weather high standard roads and highway.

Development of Timber Harvesting

(Source: Sundberg and Silversides 1988)

Current Harvesting Techniques

- Felling with powerful, lightweight chainsaws or highly productive machines with shear or sawhead attachments
- Wood is moved from stump to roadside by a variety of well-designed, powerful skidders and forwarders
- Cable yarders and helicopters are often used to move wood in rough area
- Logs are loaded onto trucks with hydraulically powered loader

Current Productivity

- Produce higher volume of woods with fewer people while keeping lower costs
- Productivity of logging operations has doubled or tripled as measured on a production per worker-hour basis since 1960 in many areas of North America.

Problems

- Logging equipment and systems are increasingly complex.
- It requires employees with better mechanical and managerial skills.
- Capital expenditures in equipment are higher and force logging contractors to focus on production to keep costs lower.
- It makes difficult to perform harvesting operations in the ways that would be:
 - more environmental-oriented
 - acceptable by today's society

Input, Output, and Constraints

- Input:
 - Money for capital investment and operational funds

Machines to simplify and perform work

Timber as a raw material

People to plan and manage operations

Input, Output, and Constraints

- Output:
 - Products delivered to mills

Revenue to loggers, and

 A harvested site that meets the objectives of a landowner's management plans

Inputs Output, and Constraints

- Criteria:
 - Foresters need to know the capabilities and limitations of timber harvesting systems so as to effectively implement forest management activities.

- Each alternative considered must meet:
 - Physically possible
 - Economically feasible, and
 - Socially acceptable

Product Forms

Shortwood – implies wood of eight feet or less

 Longwood – means all delimbed roundwood stem that are longer than shortwood

Full trees – all above ground portion of the tree

Chips

Harvesting System: Phases and Functions

System configuration

 The steps or sequences of activities in a harvesting system are called phases and functions.

Most harvesting systems have five basic phases.

Five Basic Phases

- Felling
- Processing
- Primary Transport
- Loading
- Secondary Transport

(These basic phases include a variety of functions.)

Functions

- Felling
- Delimbing, bucking
- Skidding, forwarding, yarding
- Loading
- Chipping
- Hauling

Sequence of Functions

- Each function performs a specific task in converting a standing tree to a product.
- Felling of a tree is always first function.
- Hauling of wood to mill is the last.
- The sequences of other harvesting functions can vary for a given system.

Harvesting Systems

 All logging operations today use mechanization to some degree.

- Harvesting systems can be classified by:
 - o product forms,
 - degree of mechanization, or
 - machines used

Harvesting Systems by mechanization level

- Fully mechanized:
 - whole-tree chipping and
 - o cut-to-length
- Partially mechanized typical descriptions found in use today:
 - o some skidder operations,
 - o cable logging, or
 - helicopter system

Harvesting Systems by machines used in the system

- Skidder systems
 - Felling with chainsaw or feller-buncher
- Cut-to-length system
 - Harvester and forwarder
- Cable logging
 - Felling with chainsaws or small feller-buncher
- Helicopter logging
 - Felling with chainsaws

Harvesting Systems Chainsaw and Cable Skidder

Harvesting Systems Feller-buncher and Grapple Skidder

Harvesting Systems Cut-to-length System

Harvesting Systems by product forms

- Shortwood
- Longwood
- •Full tree

Harvesting System by Product Forms

Shortwood

Longwood

(Source: Sundberg and Silversides 1988)

Harvesting Systems (North America)

- 1 West coast temperate rain forest
- 2 Canadian boreal forest
- 3 Canadian maritime provinces and US Northeast
- 4 US West
- 5 US Great Lakes
- 6 Appalachian region
- 7 South Central and Southeast US

(Source: Timberjack News, No. 2, 2003)

Today's Harvesting Systems

• Full-tree and tree-length systems accounted for 94% in the United States (McCary, 1991).

- Ground-based system is the dominant system in the US and around the world.
 - Chainsaws and cable or grapple skidders
 - Feller-bunchers and skidders

Today's Harvesting Systems

- Other systems also used in the US:
 - Cut-to-length
 - Shovel logging
 - Cable logging
 - Helicopter logging

Future Concept Harvester Timberjack's Walking Technology

1991 First Test Platform

1995 Concept Machine Phase I

2000 Concept Machine Phase II

(Source: www.timberjack.com)

Future Concept Harvester Timberjack's Walking Technology

(Source: www.timberjack.com)

Future Concept Harvester Timberjack's Walking Technology

(Source: www.timberjack.com)

Sawfish

Triton Logging, Inc. – Underwater Harvester 7000 lbs on land and slightly buoyant in water Fully remote with 8 video cameras and sonar Powered by a 40-75 HP electric motor, using biodegradable and vegetable oil-based hydraulic fluids Feller grapple and 55-inch chainsaw Handles larger trees than any land-based mechanical harvester due to water buoyancy 37-50 inflatable/reusable airbags to float trees to surface (one

bag per tree)

