Logging System Analysis

- Spreadsheet programs:
- operate on PC
- provide a powerful and user-friendly way of estimating costs
- The PC spreadsheets can:
- reduce the time spent on making calculations
- permit rapid examination of costs under several sets of assumptions

Spreadsheet Programs

- Three spreadsheet programs:
- Machine Rate Spreadsheet
- Auburn Harvesting Analyzer
- Central Appalachian Harvesting Analyzer

Machine Rate Spreadsheet

- This simple spreadsheet:
- takes input values for a machine rate calculation
- computes the hourly costs per SMH and per PMH for a single machine
- The input, assumptions, and calculations follow the method described earlier by Miyata (1980).

Summary of Machine Rate

$$
\begin{array}{ll}
\qquad \begin{array}{l}
D(\$ / S M H)=\frac{(P-S)}{N \times(S M H ~ / ~ Y e a r)}
\end{array} \text { AVI }(\$ / \text { year })=\frac{(P-S) \times(N+1)}{2 \times N}+S \\
& I I T(\$ / \text { SMH })=\frac{(\% \text { IIT }) \times A V I}{2000 S M H ~ / ~ Y e s r ~}
\end{array}
$$

$$
M \& R(\$ / P M H)=\frac{(\% M \& R) \times D}{U T}
$$

F\&L $(\$ / \mathrm{PMH})=$
Consumption Rate \times
Unit Price
$\underline{\text { Variable Cost }(\$ / P M H)=M \& R+F \& L}$
Labor $(\$ / S M H)=$ Hourly Rate $\times(1+$ Fringe Benefits $)$
$\underline{\text { Total Cost }(\$ / \mathbf{P M H})=\text { Fixed Cost }+ \text { Variable Cost }+ \text { Labor Cost }}$

Machine Rate Spreadsheet

Auburn Harvesting Analyzer

- A spreadsheet designed to simplify the estimation of logging costs.
- Originally developed in 1984 at Auburn University, Alabama.
- With few modifications, the spreadsheet can be used to model nearly any logging systems.
- Its simplicity and ease of modification to model new systems have made it popular among logging analysts.

Auburn Harvesting Analyzer

- The calculations performed in the Auburn Harvesting Analyzer are identical to those performed manually as we described earlier.
- A stand and stock table and other input variables are used to provide input for production equations.

Auburn Harvesting Analyzer

- The production rate and the number of machines in each function are combined to determine:
- the limiting function of the system, and
- the actual utilization of of each function
- Productivity per SMH is then combined with hourly cost to calculate cost per unit volume for each function in the system.

Auburn Harvesting Analyzer

- Production rate for each function is computed within the spreadsheet.
- The effects on system production and cost can be quickly examined by changing:
- stand types, or
- other operating variables

Auburn Harvesting Analyzer

There are five sections:
-Stand \& Stock Table,

- System Information,
- Machine Productivity,
- Machine Cost, and
-System Calculation.

Stand and Stock Table

- The stand and stock table is found in the upper left corner of the spreadsheet.
- The user enters:
- the range of DBH values,
- stand density in each class, and
- an appropriate local volume table or equation
- The input here is used for calculating the felling production per PMH.

Logging System Information

- General information about the logging system is found to the right of stand and stock table in Section 2.
- The user enters:
- machine hours scheduled per day,
- tract size,
- support costs, and
- road building costs, etc.

Machine Productivity

- Potential hourly productivity is computed for each function in the system in Section 3.
- These production estimates are calculated using
- stand and stock table, and
- general information
- Published production equations or other methods can be used to calculate hourly productivity by each function.

Machine Productivity (Operator Efficiency)

- The source of production information does not provide a realistic measure of actual production.
- The operator efficiency value is used to adjust the production.
- Value of 1.0 indicates that the operator in the system being modeled produces at the rate indicated by the equation being used.
- Using a value of 0.85 would indicate that the operator is 15% less productive.
- While value of 1.20 would reflect an operator who was 20% more productive.

Machine Cost Estimates

- Section 4 contains the machine rate cost estimates provided by the user for each function.
- The number of machines in each function and their availability are entered in this section.
- Fixed and labor costs are entered on a cost per SMH basis while variable costs are on per PMH basis.

System Calculation

- The last section of the spreadsheet:
- is composed entirely of calculations, and
- contains no user input
- Information from other sections of the spreadsheet is combined to determine:
- the limiting factor of production,
- actual utilization of each function,
- hourly costs and cost per unit volume
- weekly production, and
- the number of days needed to harvest the tract

Central Appalachian Harvesting Analyzer

ESTIMATION OF HOURLY MACHINE COSTS					
Purchase price (\$)	\$90,000	Fuel	$6.5 \mathrm{gal} /$	H	$\$ 0.75$
Salvage Value (\%P)	25\%	Lube	$4 \mathrm{qts} /$	H	\$1.16
Economic Life (year)	4	Repair			100\%
Interest	12\%	Labor			\$12.00
Insurance	5\%	Labor			40\%
Taxes	3\%	Mech			65\%
Weeks/year	50	SMH			40
FIXED COSTS:				MH	\$/PMH
Depreciation					12.98
Interest, Insurance, \& Taxes					9.95
Total Fixed Costs					22.93
VARIABLE COSTS:					
Manitenance \& Repair					12.98
Fuel \& Lubrication					9.52
Total Variable Costs					22.50
LABOR COSTS:					
Wages or Salaries			12.00		18.46
Fringe Benefits			4.80		7.38
Total Labor Costs			16.80		25.85
TOTAL HOURLY COSTS			46.33		71.27
			OK		Cancel

Machine Rate
Worksheet

- VBA
- Two sheets
- Machine rate and system analysis

MACHINES

Class Exercises

(1) Machine Rate

Timberjack 520 grapple skidder	
Purchase price:	\$165,000
Salvage value:	20\%
Economic life:	5 years
Interest:	10\%
Insurance:	3\%
Taxes:	0\%
Fuel usage:	$4.4 \mathrm{gal} / \mathrm{PMH}$
Lube usage:	$1.0 \mathrm{qt/PMH}$
Fuel cost:	0.88/gal
Lube cost:	1.30/qt
M\&R:	90\%
Wages:	10.00/SMH
Fringes:	35\% of wages
Utilization:	75\%

http://www.wdsc.caf.wvu.edu/JXWang/courses/WDSC422/Labs/MachRate.xls

Class Exercises

(2) Auburn Harvesting Analyzer

http://www.wdsc.caf.wvu.edu/JXWang/courses/WDSC422/Labs/aha_tons.xls

(3) Central Appalachian Harvesting Analyzer

http://www.wdsc.caf.wvu.edu/JXWang/courses/WDSC422/Labs/CAHA.xls

